鞍山信息港
时尚
当前位置:首页 > 时尚

FPGA研发之道23控制上

发布时间:2019-02-27 18:24:21 编辑:笔名

FPGA研发之道(23)-控制(上) - FPGA/CPLD - 电子工程

本质上说,FPGA的模块设计就是将输入转化成想要得到的输出结果。而除了某些简单模块,即在当拍内完成,即将输入进行逻辑操作后,再输出。(如简单加法器等)。其余大部分的设计需要通过时序逻辑和组合逻辑混合实现,时序逻辑带来就是延迟起效的问题,举例说,如实现某个信号(start)起效后,接下来五个周期需要分别进行五种操作,分别是op0,op1,op2,op3,op4 等等。如何进行控制,这就是每个工程师要面对的问题。

对于简单控制,分别可以采用计数和移位寄存器的方式来解决问题。而对于较为复杂的控制,则需要设计状态机来解决。下面将分别介绍

计数器: 对于上述操作来说,start起效后,可以通过计数实现,设置寄存器count[2:0],有效信号开始时计数自加。 计数的方式带来的问题就是,计数从零开始还是从1开始,假如计数器初始化为0,则从状态可以分别输出op0,op1,op2,op3,op4,但是在无有效信号时,计数会保持0,从而造成op0的输出。 上述举例虽然简单,但是确实很多初学者或者工程师在仿真时会经常会犯的错误。从设计来说,计数需要考虑初始值对于输出的影响。同样计数带来的另一个问题就是,从零开始的计数会导致设计与实际不一致,例如,一个信号9拍后拉低,但从零计数到8时,已经到9拍了(),这种设计会导致命名count==8 与9拍存在不一致的现象。当然也可以从1计数到9,这样状态在count==9时触发。这样就会初始化需要复位寄存器为1。当然这个问题大端和小端的争斗一样,没有终点。一个设计中如果多种计数来驱动计数的话,就需要特别小心这个问题计数。当然也可把问题交给仿真器,仿真时根据波形调整,计数的状态。

移位寄存器:如采用移位寄存器,根据上述例子,则start信号有效后,设计5bit的移位寄存器flag[4:0]分别利用寄存器的某BIT来控制输出,从而在每BIT有效时,分别输出op0,op1,op2,op3,op4。假设此种状态较少,FPGA寄存器资源较为丰富,因此利用移位寄存器是一个不错的注意。

assign op4 = ( count == 3’b100) ;

assign op4 = flag[4] ;

比较上述两种输出,则可以看出,通过计数的方式占用输出资源较多,而移位寄存器在此种应用下,占用逻辑就相对简单。(仅针对小规模的计数来说,对于超过16的计数,则使用计数器更优)。另外,通过移位寄存器可以方便的进行时序控制,不用纠结从零开始还是从1开始的问题,在某些简单的处理下能够达到更小的面积和更快的时序。

对于复杂的控制,则状态机,就是必须的。对于FPGA实现状态机,其实并不需要那么多的设计的方法。主要就是两个要点。(1)独热码。(2)三段式。

对于点来说,独热码,因为FPGA内部寄存器资源较多,另外独热码将会带来额外的面积和时序优化的好处。则以上述例子为例,增加状态转移的触发信号,状态转移图如下所示:

风寒风热感冒的区分
感冒流鼻涕能吃什么
身体乏力犯困吃什么
友情链接